Rapid thermal emittance and quantum efficiency mapping of a cesium telluride cathode in an rf photoinjector using multiple laser beamlets


الملخص بالإنكليزية

Thermal emittance and quantum efficiency (QE) are key figures of merit of photocathodes, and their uniformity is critical to high-performance photoinjectors. Several QE mapping technologies have been successfully developed; however, there is still a dearth of information on thermal emittance maps. This is because of the extremely time-consuming procedure to gather measurements by scanning a small beam across the cathode with fine steps. To simplify the mapping procedure, and to reduce the time required to take measurements, we propose a new method that requires only a single scan of the solenoid current to simultaneously obtain thermal emittance and QE distribution by using a pattern beam with multiple beamlets. In this paper, its feasibility has been confirmed by both beam dynamics simulation and theoretical analysis. The method has been successfully demonstrated in a proof-of-principle experiment using an L-band radiofrequency photoinjector with a cesium telluride cathode. In the experiment, seven beamlets were generated from a microlens array system and their corresponding thermal emittance and QE varied from 0.93 to 1.14 $mu$m/mm and from 4.6 to 8.7%, respectively. We also discuss the limitations and future improvements of the method in this paper.

تحميل البحث