In this paper, inspired by the study of the energy flux in local energy inequality of the 3D incompressible Navier-Stokes equations, we improve almost all the blow up criteria involving temperature to allow the temperature in its scaling invariant space for the 3D full compressible Navier-Stokes equations. Enlightening regular criteria via pressure $Pi=frac{text {divdiv}}{-Delta}(u_{i}u_{j})$ of the 3D incompressible Navier-Stokes equations on bounded domain, we generalize Beirao da Veigas result in [1] from the incompressible Navier-Stokes equations to the isentropic compressible Navier-Stokes system in the case away from vacuum.