Let $X$ be a Weinstein manifold with ideal contact boundary $Y$. If $Lambdasubset Y$ is a link of Legendrian spheres in $Y$ then by attaching Weinstein handles to $X$ along $Lambda$ we get a Weinstein cobordism $X_{Lambda}$ with a collection of Lagrangian co-core disks $C$ corresponding to $Lambda$. In cite{BEE, EL} it was shown that the wrapped Floer cohomology $CW^{ast}(C)$ of $C$ in the Weinstein manifold $X_{Lambda}=Xcup X_{Lambda}$is naturally isomorphic to the Legendrian differential graded algebra $CE^{ast}(Lambda)$ of $Lambda$ in $Y$. The argument uses properties of moduli spaces of holomorphic curves, the proofs of which were only sketched. The purpose of this paper is to provide proofs of these properties.