Thermal conductivity of molybdenum disulfide nanotube from molecular dynamics simulations


الملخص بالإنكليزية

Single layer molybdenum disulfide (SLMoS2), a semiconductor possesses intrinsic bandgap and high electron mobility, has attracted great attention due to its unique electronic, optical, mechanical and thermal properties. Although thermal conductivity of SLMoS2 has been widely investigated recently, less studies focus on molybdenum disulfide nanotube (MoS2NT). Here, the comprehensive temperature, size and strain effect on thermal conductivity of MoS2NT are investigated. A chirality-dependent strain effect is identified in thermal conductivity of zigzag nanotube, in which the phonon group velocity can be significantly reduced by strain. Besides, results show that thermal conductivity has a ~T-1 and a ~Lb{eta} relation with temperature from 200 to 400 K and length from 10 to 320 nm, respectively. This work not only provides feasible strategies to modulate the thermal conductivity of MoS2NT, but also offers useful insights into the fundamental mechanisms that govern the thermal conductivity, which can be used for the thermal management of low dimensional materials in optical, electronic and thermoelectrical devices. Introduction.

تحميل البحث