Dual-energy CT imaging using a single-energy CT data is feasible via deep learning


الملخص بالإنكليزية

In a standard computed tomography (CT) image, pixels having the same Hounsfield Units (HU) can correspond to different materials and it is, therefore, challenging to differentiate and quantify materials. Dual-energy CT (DECT) is desirable to differentiate multiple materials, but DECT scanners are not widely available as single-energy CT (SECT) scanners. Here we develop a deep learning approach to perform DECT imaging by using standard SECT data. A deep learning model to map low-energy image to high-energy image using a two-stage convolutional neural network (CNN) is developed. The model was evaluated using patients who received contrast-enhanced abdomen DECT scan with a popular DE application: virtual non-contrast (VNC) imaging and contrast quantification. The HU differences between the predicted and original high-energy CT images are 3.47, 2.95, 2.38 and 2.40 HU for ROIs on the spine, aorta, liver, and stomach, respectively. The HU differences between VNC images obtained from original DECT and deep learning DECT are 4.10, 3.75, 2.33 and 2.92 HU for the 4 ROIs, respectively. The aorta iodine quantification difference between iodine maps obtained from original DECT and deep learning DECT images is 0.9%, suggesting high consistency between the predicted and the original high-energy CT images. This study demonstrates that highly accurate DECT imaging with single low-energy data is achievable by using a deep learning approach. The proposed method can significantly simplify the DECT system design, reducing the scanning dose and imaging cost.

تحميل البحث