Revealing the system-bath coupling via Landau-Zener-Stuckelberg interferometry in superconducting qubits


الملخص بالإنكليزية

In this work we propose a way to unveil the type of environmental noise in strongly driven superconducting flux qubits through the analysis of the Landau-Zener-Stuckelberg (LZS) interferometry. We study both the two-level and the multilevel dynamics of the flux qubit driven by a dc+ac magnetic field. We found that the LZS interference patterns exhibit well defined multiphoton resonances whose shape strongly depend on the time scale and the type of coupling to a quantum bath. For the case of transverse system-bath coupling, the n-photon resonances are narrow and nearly symmetric with respect to the dc magnetic field for almost all time scales, whilst in the case of longitudinal coupling they exhibit a change from a wide symmetric to an antisymmetric shape for times of the order of the relaxation time. We find this dynamic behavior relevant for the interpretation of several LZS interferometry experiments in which the stationary regime is not completely reached.

تحميل البحث