Transcription-driven DNA Supercoiling: Non-Equilibrium Dynamics and Action-at-a-distance


الملخص بالإنكليزية

We study the effect of transcription on the kinetics of DNA supercoiling in 3D by means of Brownian dynamics simulations of a single nucleotide resolution coarse-grained model for double stranded DNA. By accounting for the action of a transcribing RNA polymerase (RNAP), we characterise the geometry and non equilibrium dynamics of the twin supercoiling domains forming on each side of the RNAP. Textbook pictures depict such domains as symmetric, with plectonemes (writhed DNA) appearing close to the RNAP. On the contrary, we find that the twist generated by transcription results in asymmetric domains, with plectonemes formed far from the RNAP. We show that this translates into an action-at-a-distance on DNA-binding proteins: for instance, positive supercoils downstream of an elongating RNAP destabilise nucleosomes long before the transcriptional machinery reaches the histone octamer. To understand these observations we use our framework to quantitatively analyse the relaxation dynamics of supercoiled DNA. We find a striking separation of timescales between twist diffusion, which is a simple and fast process, and writhe relaxation, which is slow and entails multiple steps.

تحميل البحث