Example-Guided Style Consistent Image Synthesis from Semantic Labeling


الملخص بالإنكليزية

Example-guided image synthesis aims to synthesize an image from a semantic label map and an exemplary image indicating style. We use the term style in this problem to refer to implicit characteristics of images, for example: in portraits style includes gender, racial identity, age, hairstyle; in full body pictures it includes clothing; in street scenes, it refers to weather and time of day and such like. A semantic label map in these cases indicates facial expression, full body pose, or scene segmentation. We propose a solution to the example-guided image synthesis problem using conditional generative adversarial networks with style consistency. Our key contributions are (i) a novel style consistency discriminator to determine whether a pair of images are consistent in style; (ii) an adaptive semantic consistency loss; and (iii) a training data sampling strategy, for synthesizing style-consistent results to the exemplar.

تحميل البحث