Zeeman tunability of Andreev bound states in van-der-Waals tunnel barriers


الملخص بالإنكليزية

Quantum dots proximity-coupled to superconductors are attractive research platforms due to the intricate interplay between the single-electron nature of the dot and the many body nature of the superconducting state. These have been studied mostly using nanowires and carbon nanotubes, which allow a combination of tunability and proximity. Here we report a new type of quantum dot which allows proximity to a broad range superconducting systems. The dots are realized as embedded defects within semiconducting tunnel barriers in van-der-Waals layers. By placing such layers on top of thin NbSe$_2$, we can probe the Andreev bound state spectra of such dots up to high in-plane magnetic fields without observing effects of a diminishing superconducting gap. As tunnel junctions defined on NbSe$_2$ have a hard gap, we can map the sub-gap spectra without background related to the rest of the junction. We find that the proximitized defect states invariably have a singlet ground state, manifest in the Zeeman splitting of the sub-gap excitation. We also find, in some cases, bound states which converge to zero energy and remain there. We discuss the role of the spin-orbit term, present both in the barrier and the superconductor, in the realization of such topologically trivial zero-energy states.

تحميل البحث