Classification of low-luminosity stellar X-ray sources in the field of the Draco dwarf spheroidal galaxy


الملخص بالإنكليزية

A previous study of the X-ray luminosity function of the X-ray sources in the field of the Draco dwarf spheroidal (dSph) galaxy indicated the presence of a population of unknown X-ray sources in the soft energy range of 0.5-2 keV. In 2015, Draco dSph was observed again in twenty-six deep XMM-Newton, observations providing an opportunity for a new study of the yet unclassified sources. We apply the classification criteria presented in our previous multi-wavelength study of the X-ray sources of the Draco dSph to the sources detected in the combined 2009 and 2015 XMM-Newton data set. These criteria are based on X-ray studies and properties of the optical, near-infrared, and mid-infrared counterparts and allows us to distinguish background active galactic nuclei~(AGNs) and galaxies from other types of X-ray sources. We present the classification of X-ray sources, for which the counterpart is identified as a stellar object based on our criteria from multi-wavelength data. We identify three new symbiotic stars in the Draco dSph with X-ray luminosities between $sim$3.5$times10^{34}$ erg s$^{-1}$ and 5.5$times10^{34}$ erg s$^{-1}$. The X-ray spectral analysis shows that two of the classified symbiotic stars are $beta$-type. This is the first identification of this class of symbiotic stars in a nearby galaxy. Eight sources are classified as Galactic M dwarfs in the field of the Draco dSph. The distances of these M dwarfs are between$sim$140-800 pc, their X-ray luminosities are between $10^{28}-10^{29}$ erg s$^{-1}$ and the logarithmic ratio of X-ray to bolometric luminosity, log$(frac{L_text{X}}{L_text{bol}})$, is between $-3.4$ to $-2.1$. The multiple observations allowed us to investigate flare activity of the M dwarfs. Moreover, we classified three foreground sources, located at distances of the order of $sim$1-3 kpc in the field of the Draco dSph.

تحميل البحث