A Gallai coloring of a complete graph is an edge-coloring such that no triangle has all its edges colored differently. A Gallai $k$-coloring is a Gallai coloring that uses $k$ colors. Given a graph $H$ and an integer $kgeq 1$, the Gallai-Ramsey number $GR_k(H)$ of $H$ is the least positive integer $N$ such that every Gallai $k$-coloring of the complete graph $K_N$ contains a monochromatic copy of $H$. Let $W_{2n} $ denote an even wheel on $2n+1ge5$ vertices. In this note, we study Gallai-Ramsey number of $W_{2n}$ and completely determine the exact value of $GR_k(W_4)$ for all $kge2$.