The interactions between antiferromagnetism, tetrahedral sites and electron-phonon coupling in FeSe1-xTex and FeSe/SrTiO3


الملخص بالإنكليزية

We show that the superconducting transition temperature Tc of FeSe1-xTex can be computed to reasonable values in a modified McMillan approach in which the electron-phonon coupling is amplified by the antiferromagnetism and the out-of-plane phonons triggered by the tetrahedral lattice sites. This interplay is not only effective at ambient pressure, but also under hydrostatic compression. According to our model, the theoretical Tc of the compressed FeSe0.5Te0.5 agrees with experiment results. More importantly, by taking into account the interfacial effect between an FeSe monolayer and its SrTiO3 substrate as an additional gain factor, our calculated Tc value is up to 91 K high, and provides evidence that the strong Tc enhancement recently observed in such monolayers with Tc reaching 100 K may be due to an enhanced-electron phonon coupling.

تحميل البحث