Spatial ergodicity for SPDEs via a Poincare-type inequality


الملخص بالإنكليزية

Consider a parabolic stochastic PDE of the form $partial_t u=frac{1}{2}Delta u + sigma(u)eta$, where $u=u(t,,x)$ for $tge0$ and $xinmathbb{R}^d$, $sigma:mathbb{R}tomathbb{R}$ is Lipschitz continuous and non random, and $eta$ is a centered Gaussian noise that is white in time and colored in space, with a possibly-signed homogeneous spatial correlation function $f$. If, in addition, $u(0)equiv1$, then we prove that, under a mild decay condition on $f$, the process $xmapsto u(t,,x)$ is stationary and ergodic at all times $t>0$. It has been argued that, when coupled with moment estimates, spatial ergodicity of $u$ teaches us about the intermittent nature of the solution to such SPDEs cite{BertiniCancrini1995,KhCBMS}. Our results provide rigorous justification of of such discussions. The proof rests on novel facts about functions of positive type, and on strong localization bounds for comparison of SPDEs.

تحميل البحث