Gravitoviscous protoplanetary disks with a dust component. I. The importance of the inner sub-au region


الملخص بالإنكليزية

The central region of a circumstellar disk is difficult to resolve in global numerical simulations of collapsing cloud cores, but its effect on the evolution of the entire disk can be significant. We use numerical hydrodynamics simulations to model the long-term evolution of self-gravitating and viscous circumstellar disks in the thin-disk limit. Simulations start from the gravitational collapse of prestellar cores of 0.5--1.0~$M_odot$ and both gaseous and dusty subsystems were considered, including a model for dust growth. The inner unresolved 1.0 au of the disk is replaced with a central smart cell (CSC) -- a simplified model that simulates physical processes that may occur in this region. We found that the mass transport rate through the CSC has an appreciable effect on the evolution of the entire disk. Models with slow mass transport form more massive and warmer disks and they are more susceptible to gravitational instability and fragmentation, including a newly identified episodic mode of disk fragmentation in the T Tauri phase of disk evolution. Models with slow mass transport through the CSC feature episodic accretion and luminosity bursts in the early evolution, while models with fast transport are characterized by a steadily declining accretion rate with low-amplitude flickering. Dust grows to a larger, decimeter size in the slow transport models and efficiently drifts in the CSC, where it accumulates reaching the limit when streaming instability becomes operational. We argue that gravitational instability, together with streaming instability likely operating in the inner disk regions, constitute two concurrent planet-forming mechanisms, which may explain the observed diversity of exoplanetary orbits (Abridged).

تحميل البحث