Adiabatic and Radiative Cooling of Relativistic Electrons Applied to Synchrotron Spectra and Light-Curves of Gamma-Ray Burst Pulses


الملخص بالإنكليزية

We investigate the adiabatic and radiative (synchrotron and inverse-Compton) cooling of relativistic electrons whose injected/initial distribution with energy is a power-law above a typical energy $gamma_i$. Analytical and numerical results are presented for the cooling-tail and the cooled-injected distribution that develop below and above the typical energy of injected electrons, for the evolution of the peak-energy $E_p$ of the synchrotron emission spectrum, and for the pulse shape resulting from an episode of electron injection. The synchrotron emission calculated numerically is compared with the spectrum and shape of Gamma-Ray Burst (GRB) pulses. Both adiabatic and radiative cooling processes lead to a softening of the pulse spectrum, and both types of cooling processes lead to pulses peaking earlier and lasting shorter at higher energy, quantitatively consistent with observations. For adiabatic-dominated electron cooling, a power-law injection rate $R_i$ suffices to explain the observed power-law GRB low-energy spectra. Synchrotron-dominated cooling leads to power-law cooling-tails that yield the synchrotron standard slope alpha = -3/2 provided that $R_i sim B^2$, which is exactly the expectation if the magnetic field is a constant fraction of the post-shock energy density. Increasing (decreasing) $R_i$ and decreasing (increasing) B(t) lead to slopes alpha harder (softer, respectively) than the standard value and to non--power-law (curved) cooling-tails. Inverse-Compton cooling yields four values for the slope alpha but, as for synchrotron, other $R_i$ or B histories yield a wider range of slopes and curved low-energy spectra. Feedback between the power-law segments that develop below and above the typical injected electron leads to a synchrotron spectrum with many breaks above and below the usual 10 keV-1 MeV observing range.

تحميل البحث