Global distribution of far-ultraviolet emissions from highly ionized gas in the Milky Way


الملخص بالإنكليزية

We present all-sky maps of two major FUV cooling lines, C IV and O VI, of highly ionized gas to investigate the nature of the transition-temperature gas. From the extinction-corrected line intensities of C IV and O VI, we calculated the gas temperature and the emission measure of the transition-temperature gas assuming isothermal plasma in the collisional ionization equilibrium. The gas temperature was found to be more or less uniform throughout the Galaxy with a value of (1.89 $pm$ 0.06) $times$ $10^5$ K. The emission measure of the transition-temperature gas is described well by a disk-like model in which the scale height of the electron density is $z_0=6_{-2}^{+3}$ kpc. The total mass of the transition-temperature gas is estimated to be approximately $6.4_{-2.8}^{+5.2}times10^9 M_{bigodot}$. We also calculated the volume-filling fraction of the transition-temperature gas, which was estimated to be $f=0.26pm0.09$, and varies from $fsim0.37$ in the inner Galaxy to $fsim0.18$ in the outer Galaxy. The spatial distribution of C IV and O VI cannot be explained by a simple supernova remnant model or a three-phase model. The combined effects of supernova remnants and turbulent mixing layers can explain the intensity ratio of C IV and O VI. Thermal conduction front models and high-velocity cloud models are also consistent with our observation.

تحميل البحث