Macroscopic observables from the comparison of local reference systems


الملخص بالإنكليزية

Parallel transport as dictated by a gauge field determines a collection of local reference systems. Comparing local reference systems in overlapping regions leads to an ensemble of algebras of relational kinematical observables for gauge theories including general relativity. Using an auxiliary cellular decomposition, we propose a discretization of the gauge field based on a decimation of the mentioned ensemble of kinematical observables. The outcome is a discrete ensemble of local subalgebras of ``macroscopic observables characterizing a measuring scale. A set of evaluations of those macroscopic observables is called an extended lattice gauge field because it determines a $G$-bundle over $M$ (and over submanifolds of $M$ that inherit a cellular decomposition) together with a lattice gauge field over an embedded lattice. A physical observable in our algebra of macroscopic observables is constructed. An initial study of aspects of regularization and coarse graining, which are special to this description of gauge fields over a combinatorial base, is presented. The physical relevance of this extension of ordinary lattice gauge fields is discussed in the context of quantum gravity.

تحميل البحث