We consider the Cauchy problem for plate equations with rotational inertia and frictional damping terms. We will derive asymptotic profiles of the solution in L^2-sense as time goes to infinity in the case when the initial data have high and low regularity, respectively. Especially, in the low regularity case of the initial data one encounters the regularity-loss structure of the solutions, and the analysis is more delicate. We employ the so-called Fourier splitting method combined with the explicit expression of the solutions (high frequency estimates) and the method due to Ikehata (low frequency estimates).