The greedy strategy is an approximation algorithm to solve optimization problems arising in decision making with multiple actions. How good is the greedy strategy compared to the optimal solution? In this survey, we mainly consider two classes of optimization problems where the objective function is submodular. The first is set submodular optimization, which is to choose a set of actions to optimize a set submodular objective function, and the second is string submodular optimization, which is to choose an ordered set of actions to optimize a string submodular function. Our emphasis here is on performance bounds for the greedy strategy in submodular optimization problems. Specifically, we review performance bounds for the greedy strategy, more general and improved bounds in terms of curvature, performance bounds for the batched greedy strategy, and performance bounds for Nash equilibria.