We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinsons disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinsons disease.