The m-least significant bits operation for quantum random number generation


الملخص بالإنكليزية

Quantum random number generators (QRNGs) can provide genuine randomness based on the inherent unpredictable nature of quantum physics. The extracted randomness relies not only on the physical parts of the QRNG, such as the entropy source and the measurement device, but also on appropriate postprocessing method. The m-least significant bits (m-LSBs) operation is one of the simplest randomness extraction method, which has the advantage of easy implementations. Nonetheless, a detailed analysis of the m-LSBs operation in QRNGs is still missing. In this work we give a physical explanation of the m-LSBs operation by introducing a new positive operator-valued measurement operator, which is obtained by regrouping the results of coarse-grained measurements. Both trusted and untrusted source scenarios are discussed. The results show that the m-LSBs operation can extract randomness effectively under the condition of the trusted source, while it is not effective under the untrusted source scenario.

تحميل البحث