The Large Hadron Collider witnesses the highest ever production cross-section of double parton scattering processes. The production of a Z-boson along with two jets from double parton scattering provides a unique opportunity to explore the kinematics of double parton scattering processes and their dependence on the scale of the second interaction. The experimental measurement of this process is largely contaminated by Z + jets production from single parton scattering. In this paper, fragmentation properties of a jet are explored to check their sensitivity towards double parton scattering. The present study is performed using simulated Z + jets events, produced with textsc{madgraph} and textsc{powheg} Monte-Carlo event generators, hadronized and parton showered using textsc{pythia}8. The effect of different hadronization model on the discrimination based on the fragmentation properties of a jet is also investigated by using events simulated with textsc{herwig}++. It is observed that discrimination based on the fragmentation properties of a jet can significantly suppress the background from single parton scattering, which results into 40--50% gain in the contribution of double parton scattering.