Nonlocal Quantum Erasure of Phase Objects


الملخص بالإنكليزية

The Franson interference is a fourth order interference effect, which unlike the better known Hong-Ou-Mandel interference, does not require the entangled photon pairs to be present at the same space-time location for interference to occur - it is nonlocal. Here, we use a modified Franson interferometer to experimentally demonstrate the nonlocal erasure and correction of an image of a phase-object taken through coincidence imaging. This non-local quantum erasure technique can have several potential applications such as phase corrections in quantum imaging and microscopy and also user authentication of two foreign distant parties.

تحميل البحث