The CO_{2} electro-reduction reaction (CORR) is a promising avenue to convert greenhouse gases into high-value fuels and chemicals, in addition to being an attractive method for storing intermittent renewable energy. Although polycrystalline Cu surfaces have long known to be unique in their capabilities of catalyzing the conversion of CO_{2} to higher-order C1 and C2 fuels, such as hydrocarbons (CH_{4}, C_{2}H_{4} etc.) and alcohols (CH_{3}OH, C_{2}H_{5}OH), product selectivity remains a challenge. In this study, we select three metal catalysts (Pt, Au, Cu) and apply in situ surface enhanced infrared absorption spectroscopy (SEIRAS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS), coupled to density-functional theory (DFT) calculations, to get insight into the reaction pathway for the CORR. We present a comprehensive reaction mechanism for the CORR, and show that the preferential reaction pathway can be rationalized in terms of metal-carbon (M-C) and metal-oxygen (M-O) affinity. We show that the final products are determined by the configuration of the initial intermediates, C-bound and O-bound, which can be obtained from CO_{2} and (H)CO_{3}, respectively. C1 hydrocarbons are produced via OCH_{3, ad} intermediates obtained from O-bound CO_{3, ad} and require a catalyst with relatively high affinity for O-bound intermediates. Additionally, C2 hydrocarbon formation is suggested to result from the C-C coupling between C-bound CO_{ad} and (H)CO_{ad}, which requires an optimal affinity for the C-bound species, so that (H)CO_{ad} can be further reduced without poisoning the catalyst surface. Our findings pave the way towards a design strategy for CORR catalysts with improved selectivity, based on this experimental/theoretical reaction mechanisms that have been identified.