Quantum Adiabatic Doping with Incommensurate Optical Lattices


الملخص بالإنكليزية

Quantum simulations of Fermi-Hubbard models have been attracting considerable efforts in the optical lattice research, with the ultracold anti-ferromagnetic atomic phase reached at half filling in recent years. An unresolved issue is to dope the system while maintaining the low thermal entropy. Here we propose to achieve the low temperature phase of the doped Fermi-Hubbard model using incommensurate optical lattices through adiabatic quantum evolution. In this theoretical proposal, we find that one major problem about the adiabatic doping that shows up is atomic localization in the incommensurate lattice, potentially causing exponential slowing down of the adiabatic procedure. We study both one- and two-dimensional incommensurate optical lattices, and find that the localization prevents efficient adiabatic doping in the strong lattice regime for both cases. With density matrix renormalization group calculation, we further show that the slowing down problem in one dimension can be circumvented by considering interaction induced many-body delocalization, which is experimentally feasible using Feshbach resonance techniques. This protocol is expected to be efficient as well in two dimensions where the localization phenomenon is less stable.

تحميل البحث