Theoretical foundations of the reduced relativistic gas in the cosmological perturbed context


الملخص بالإنكليزية

The Reduced Relativistic Gas (RRG) is a simplified version of the ideal relativistic gas, which assumes that all particles have the same momentum magnitude. Although this is a very idealized situation, the resulting model preserves the phenomenology of Maxwell-Boltzmann distribution and, in some situations, can be described as a perfect fluid, without introducing large errors in both cosmological background and first-order perturbations. The perfect fluid description of RRG model was already used to study the warmness of dark matter, massive neutrinos and interaction of baryons and photons before recombination, showing very good agreement with previous works based on the full Einstein-Boltzmann system of equations. In order to understand these results and construct a more general and formal framework for RRG, we develop a theoretical description of first-order cosmological perturbations of RRG, based on a distribution function which encodes the simplifying assumption that all particles have the same momentum magnitude. The full set of Einstein-Boltzmann equations for RRG distribution are derived and quantities beyond the perfect fluid approximation are studied. Using RRG to describe warm dark matter, we show that, for particles with $m sim text{keV}$, the perfect fluid approximation is valid on scales $k < 10, text{h}/text{Mpc}$, for most of the universe evolution. We also determine initial conditions for RRG in the early universe and study the evolution of potential in a toy model of universe composed only by RRG.

تحميل البحث