Measurement of $mathcal{R}(D)$ and $mathcal{R}(D^{ast})$ with a semileptonic tagging method


الملخص بالإنكليزية

We report a measurement of the ratios of branching fractions $mathcal{R}(D) = {cal B}(bar{B} to D tau^- bar{ u}_{tau})/{cal B}(bar{B} to D ell^- bar{ u}_{ell})$ and $mathcal{R}(D^{ast}) = {cal B}(bar{B} to D^* tau^- bar{ u}_{tau})/{cal B}(bar{B} to D^* ell^- bar{ u}_{ell})$, where $ell$ denotes an electron or a muon. The results are based on a data sample containing $772times10^6$ $Bbar{B}$ events recorded at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. The analysis utilizes a method where the tag-side $B$ meson is reconstructed in a semileptonic decay mode, and the signal-side $tau$ is reconstructed in a purely leptonic decay. The measured values are $mathcal{R}(D)= 0.307 pm 0.037 pm 0.016$ and $mathcal{R}(D^{ast})= 0.283 pm 0.018 pm 0.014$, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within $0.2$ and $1.1$ standard deviations, respectively, while their combination agrees with the Standard Model predictions within $1.2$ standard deviations.

تحميل البحث