Mode-selective coupling of coherent phonons to the Bi2212 electronic band structure


الملخص بالإنكليزية

Cuprate superconductors host a multitude of low-energy optical phonons. Using time- and angle-resolved photoemission spectroscopy, we study coherent phonons in Bi$_{2}$Sr$_{2}$Ca$_{0.92}$Y$_{0.08}$Cu$_{2}$O$_{8+delta}$. Sub-meV modulations of the electronic band structure are observed at frequencies of $3.94pm 0.01$ and $5.59pm 0.06$ THz. For the dominant mode at 3.94 THz, the amplitude of the band energy oscillation weakly increases as a function of momentum away from the node. Theoretical calculations allow identifying the observed modes as CuO$_{2}$-derived $A_{1g}$ phonons. The Bi- and Sr-derived $A_{1g}$ modes which dominate Raman spectra in the relevant frequency range are absent in our measurements. This highlights the mode-selectivity for phonons coupled to the near-Fermi-level electrons, which originate from CuO$_{2}$ planes and dictate thermodynamic properties.

تحميل البحث