Measurement of the radial matrix elements for the $6s ^2S_{1/2} rightarrow 7p ^2P_J$ transitions in cesium


الملخص بالإنكليزية

We report measurements of the electric dipole matrix elements of the $^{133}$Cs $ $ $6s,^2S_{1/2} rightarrow 7p,^2P_{1/2}$ and $6s,^2S_{1/2} rightarrow 7p,^2P_{3/2}$ transitions. Each of these determinations is based on direct, precise comparisons of the absorption coefficients between two absorption lines. For the $langle 6s,^2S_{1/2}||r|| 7p,^2P_{3/2} rangle$ matrix element, we measure the ratio of the absorption coefficient on this line with that of the D$_1$ transition, $6s,^2S_{1/2} rightarrow 6p,^2P_{1/2}$. The matrix element of the D$_1$ line has been determined with high precision previously by many groups. For the $langle 6s,^2S_{1/2}||r|| 7p,^2P_{1/2} rangle$ matrix element, we measure the ratio of the absorption coefficient on this line with that of the $6s,^2S_{1/2} rightarrow 7p,^2P_{3/2}$ transition. Our results for these matrix elements are $langle 6s,^2S_{1/2}||r|| 7p,^2P_{3/2} rangle = 0.57417 : (57)~a_0$ and $langle 6s,^2S_{1/2}||r|| 7p,^2P_{1/2} rangle = 0.27810 : (45)~a_0$. These measurements have implications for the interpretation of parity nonconservation in atoms.

تحميل البحث