We investigate online scheduling with commitment for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. As soon as a job has been submitted, the commitment constraint forces us to decide immediately whether we accept or reject the job. Upon acceptance of a job, we must complete it before its deadline $d$ that satisfies $d geq (1+epsilon)cdot p + r$, with $p$ and $r$ being the processing time and the submission time of the job, respectively while $epsilon>0$ is the slack of the system. Since the hard case typically arises for near-tight deadlines, we consider $varepsilonleq 1$. We use competitive analysis to evaluate our algorithms. Our first main contribution is a deterministic preemptive online algorithm with an almost tight competitive ratio on any number of machines. For a single machine, the competitive factor matches the optimal bound $frac{1+epsilon}{epsilon}$ of the greedy acceptance policy. Then the competitive ratio improves with an increasing number of machines and approaches $(1+epsilon)cdotln frac{1+epsilon}{epsilon}$ as the number of machines converges to infinity. This is an exponential improvement over the greedy acceptance policy for small $epsilon$. In the non-preemptive case, we present a deterministic algorithm on $m$ machines with a competitive ratio of $1+mcdot left(frac{1+epsilon}{epsilon}right)^{frac{1}{m}}$. This matches the optimal bound of $2+frac{1}{epsilon}$ of the greedy acceptance policy for a single machine while it again guarantees an exponential improvement over the greedy acceptance policy for small $epsilon$ and large $m$. In addition, we determine an almost tight lower bound that approaches $mcdot left(frac{1}{epsilon}right)^{frac{1}{m}}$ for large $m$ and small $epsilon$.