Lattice QCD investigation of a doubly-bottom $bar{b} bar{b} u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$


الملخص بالإنكليزية

We use lattice QCD to investigate the spectrum of the $bar{b} bar{b} u d$ four-quark system with quantum numbers $I(J^P) = 0(1^+)$. We use five different gauge-link ensembles with $2+1$ flavors of domain-wall fermions, including one at the physical pion mass, and treat the heavy $bar{b}$ quark within the framework of lattice nonrelativistic QCD. Our work improves upon previous similar computations by considering in addition to local four-quark interpolators also nonlocal two-meson interpolators and by performing a Luscher analysis to extrapolate our results to infinite volume. We obtain a binding energy of $(-128 pm 24 pm 10) , textrm{MeV}$, corresponding to the mass $(10476 pm 24 pm 10) , textrm{MeV}$, which confirms the existence of a $bar{b} bar{b} u d$ tetraquark that is stable with respect to the strong and electromagnetic interactions.

تحميل البحث