Abstract axiomatic formulation of mathematical structures are extensively used to describe our physical world. We take here the reverse way. By making basic assumptions as starting point, we reconstruct some features of both geometry and topology in a fully operational manner. Curiously enough, primitive concepts such as points, spaces, straight lines, planes are all defined within our formalism. Our construction breaks down with the usual literature, as our axioms have deep connection with nature. Besides that, we hope this operational approach could also be of pedagogical interest.