Spin reorientation of the Fe moments in Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$: Evidence for a strong interplay of Eu and Fe magnetism


الملخص بالإنكليزية

Using complementary polarized and unpolarized single-crystal neutron diffraction, we have investigated the temperature-dependent magnetic structures of Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$. Upon 50 % dilution of the Eu sites with isovalent Ca$^{2+}$, the Eu sublattice is found to be still long-range ordered below $mathit{T_{Eu}}$ = 10 K, in the A-typed antiferromagnetic (AFM) structure. The moment size of Eu$^{2+}$ spins is estimated to be as large as 6.74(4) $mu_{B}$ at 2.5 K. The Fe sublattice undergoes a spin-density-wave transition at $mathit{T_{SDW}}$ = 192(2) K and displays an in-plane AFM structure above $mathit{T_{Eu}}$. However, at 2.5 K, the Fe$^{2+}$ moments are found to be ordered in a canted AFM structure with a canting angle of 14(4){deg} out of the $mathit{ab}$ plane. The spin reorientation of Fe below the AFM ordering temperature of Eu provides a direct evidence of a strong interplay between the two magnetic sublattices in Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$.

تحميل البحث