Theory for the effect of fluid inertia on the orientation of a small particle settling in turbulence


الملخص بالإنكليزية

Ice crystals settling through a turbulent cloud are rotated by turbulent velocity gradients. In the same way, turbulence affects the orientation of aggregates of organic matter settling in the ocean. In fact most solid particles encountered in Nature are not spherical, and their orientation affects their settling speed, as well as collision rates between particles. Therefore it is important to understand the distribution of orientations of non-spherical particles settling in turbulence. Here we study the angular dynamics of small prolate spheroids settling in homogeneous isotropic turbulence. We consider a limit of the problem where the fluid torque due to convective inertia dominates, so that rods settle essentially horizontally. Turbulence causes the orientation of the settling particles to fluctuate, and we calculate their orientation distribution for prolate spheroids with arbitrary aspect ratios for large settling number Sv (a dimensionless measure of the settling speed), assuming small Stokes number St (a dimensionless measure of particle inertia). This overdamped theory predicts that the orientation distribution is very narrow at large Sv, with a variance proportional to ${rm Sv}^{-4}$. By considering the role of particle inertia, we analyse the limitations of the overdamped theory, and determine its range of applicability. Our predictions are in excellent agreement with numerical simulations of simplified models of turbulent flows. Finally we contrast our results with those of an alternative theory predicting that the orientation variance scales as ${rm Sv}^{-2}$ at large Sv.

تحميل البحث