Control of the Coupling Strength and the Linewidth of a Cavity-Magnon Polariton


الملخص بالإنكليزية

The full coherent control of hybridized systems such as strongly coupled cavity photon-magnon states is a crucial step to enable future information processing technologies. Thus, it is particularly interesting to engineer deliberate control mechanisms such as the full control of the coupling strength as a measure for coherent information exchange. In this work, we employ cavity resonator spectroscopy to demonstrate the complete control of the coupling strength of hybridized cavity photon-magnon states. For this, we use two driving microwave inputs which can be tuned at will. Here, only the first input couples directly to the cavity resonator photons, whilst the second tone exclusively acts as a direct input for the magnons. For these inputs, both the relative phase $phi$ and amplitude $delta_0$ can be independently controlled. We demonstrate that for specific quadratures between both tones, we can increase the coupling strength, close the anticrossing gap, and enter a regime of level merging. At the transition, the total amplitude is enhanced by a factor of 1000 and we observe an additional linewidth decrease of $13%$ at resonance due to level merging. Such control of the coupling, and hence linewidth, open up an avenue to enable or suppress an exchange of information and bridging the gap between quantum information and spintronics applications.

تحميل البحث