Determining Hadron-Quark Phase Transition Chemical Potential via Astronomical Observations


الملخص بالإنكليزية

We propose a scheme to determine the chemical potential and baryon number density of the hadron-quark phase transition in cold dense strong interaction matter (compact star matter). The hadron matter is described with the relativistic mean field theory, and the quark matter is described with the Dyson-Schwinger equation approach of QCD. To study the first-order phase transition, we take the sound speed as the interpolation objective to construct the equation of state in the middle density region. With the maximum mass, the tidal deformability and the radius of neutron stars being taken as calibration quantities, the phase transition chemical potential is constrained to a quite small range. And the most probable value of the phase transition chemical potential is found.

تحميل البحث