Statistical study of hard X-ray emitting electrons associated with flare-related coronal jets


الملخص بالإنكليزية

We present the statistical analysis of 33 flare-related coronal jets, and discuss the link between the jet and the flare properties in these events. We selected jets that were observed between 2010 and 2016 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) and are temporally and spatially associated to flares observed by the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI). For each jet, we calculated the jet duration and projected velocity in the plane of sky. The jet duration distribution has a median of 18.8 minutes. The projected velocities are between 31 km/s and 456 km/s with a median at 210 km/s. For each associated flare, we performed X-ray imaging and spectroscopy and identify non-thermal emission. Non-thermal emission was detected in only 1/4 of the event considered. We did not find a clear correlation between the flare thermal energy or SXR peak flux and the jet velocity. A moderate anti-correlation was found between the jet duration and the flare SXR peak flux. There is no preferential time delay between the flare and the jet. The X-ray emission is generally located at the base of the jet. The analysis presented in this paper suggests that the flare and jet are part of the same explosive event, that the jet is driven by the propagation of an Alfvenic perturbation, and that the energy partition between flare and jets varies substantially from one event to another.

تحميل البحث