A Model of Neutrino Anomalies and IceCube data


الملخص بالإنكليزية

We interpret the neutrino anomalies in neutrino oscillation experiments and the high energy neutrino events at IceCube in terms of neutrino oscillations in an extension of the standard model where three sterile neutrinos are introduced so as to make two light neutrinos to be Pseudo-Dirac particles and a light neutrino to be a Majorana particle. Our model is different from the so-called $3+n$ model with $n$ sterile neutrinos suggested to interpret short baseline anomalies in terms of neutrino oscillations. While the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in $3+n$ model is simply extended to $ntimes n$ unitary matrix, the neutrino mixing matrix in our model is parameterized so as to keep the $3times3$ PMNS mixing matrix for three active neutrinos unitary. There are also no flavor changing neutral current interactions leading to the conversion of active neutrinos to sterile ones or vice versa. We derive new forms of neutrino oscillation probabilities containing the new interference between the active and sterile neutrinos which are characterized by additional new parameters $Delta m^2$ and $theta$. Based on the new formulae derived, we show how the short baseline neutrino anomalies can be explained in terms of oscillations, and study the implication of the high energy neutrino events detected at IceCube on the probe of pseudo-Dirac neutrinos. New phenomenological effects attributed to the existence of the sterile neutrinos are discussed.

تحميل البحث