Thanks to high-resolution and non-dispersive spectrometers onboard future X-ray missions such as XRISM and Athena, we are finally poised to answer important questions about the formation and evolution of galaxies and large-scale structure. However, we currently lack an adequate understanding of many atomic processes behind the spectral features we will soon observe. Large error bars on parameters as critical as transition energies and atomic cross sections can lead to unacceptable uncertainties in the calculations of e.g., elemental abundance, velocity, and temperature. Unless we address these issues, we risk limiting the full scientific potential of these missions. Laboratory astrophysics, which comprises theoretical and experimental studies of the underlying physics behind observable astrophysical processes, is therefore central to the success of these missions.