Galaxies form and evolve in the context of their local and large-scale environments. Their baryonic content that we observe with imaging and spectroscopy is intimately connected to the properties of their dark matter halos, and to their location in the cosmic web of large-scale structure. Very large spectroscopic surveys of the local universe (e.g., SDSS and GAMA) measure galaxy positions (location within large-scale structure), statistical clustering (a direct constraint on dark matter halo masses), and spectral features (measuring physical conditions of the gas and stars within the galaxies, as well as internal velocities). Deep surveys with the James Webb Space Telescope (JWST) will revolutionize spectroscopic measurements of redshifts and spectral properties for galaxies out to the epoch of reionization, but with numerical statistics and over cosmic volumes that are too small to map large-scale structure and to constrain halo properties via clustering. Here, we consider advances in understanding galaxy evolution that would be enabled by very large spectroscopic surveys at high redshifts: very large numbers of galaxies (outstanding statistics) over large co-moving volumes (large-scale structure on all scales) over broad redshift ranges (evolution over most of cosmic history). The required observational facility can be established as part of the probe portfolio by NASA within the next decade.