Computational ghost imaging is an imaging technique in which an object is imaged from light collected using a single-pixel detector with no spatial resolution. Recently, ghost cytometry has been proposed for a high-speed cell-classification method that involves ghost imaging and machine learning in flow cytometry. Ghost cytometry skips the reconstruction of cell images from signals and directly used signals for cell-classification because this reconstruction is what creates the bottleneck in the high-speed analysis. In this paper, we provide theoretical analysis for learning from ghost imaging without imaging.