Generalized Fermi acceleration


الملخص بالإنكليزية

In highly conducting astrophysical plasmas, charged particles are generically accelerated through Fermi-type processes involving repeated interactions with moving magnetized scattering centers. The present paper proposes a generalized description of these acceleration processes, by following the momentum of the particle through a continuous sequence of accelerated frames, defined in such a way that the electric field vanishes at each point along the particle trajectory. In each locally inertial frame, the Lorentz force affects the direction of motion of the particle, but the energy changes solely as a result of inertial corrections. This unified description of Fermi acceleration applies equally well in sub- and ultrarelativistic settings, in Cartesian or non-Cartesian geometries, flat or nonflat space-time. Known results are recovered in a variety of regimes -- shock, turbulent and shear acceleration -- and new results are derived in lieu of applications, e.g. nonresonant acceleration in relativistic turbulence, stochastic unipolar inductive acceleration and centrifugo-shear acceleration close to the horizon of a black hole.

تحميل البحث