The influence of the Dzyaloshinskii-Moriya interaction in ultra-thin ferromagnetic films and chiral magnonic crystals on the behavior of spin waves is reviewed. During the last decade, it has been shown, both theoretically and experimentally, that this anisotropic exchange interaction produces non-reciprocal features on the spin-wave spectrum of a magnetic system, a phenomenon that occurs both for bulk and interfacial Dzyaloshinskii-Moriya coupling. More recently, the concept of a chiral magnonic crystal has been introduced, where the interfacial Dzyaloshinskii-Moriya interaction is periodic. The effect of this periodicity include additional features such as flat bands, indirect gaps, and an unusual spin-wave evolution.