Evidence for Helical Hinge Zero Modes in an Fe-Based Superconductor


الملخص بالإنكليزية

Combining topology and superconductivity provides a powerful tool for investigating fundamental physics as well as a route to fault-tolerant quantum computing. There is mounting evidence that the Fe-Based Superconductor FeTe$_{0.55}$Se$_{0.45}$ (FTS) may also be topologically non-trivial. Should the superconducting order be s$^{pm}$, then FTS could be a higher order topological superconductor with Helical Hinge Zero Modes (HHZM).To test the presence of these modes we developed a new method for making normal metal/superconductor junctions via 2D atomic crystal heterostructures. As expected,junctions in contact with the hinge reveal a sharp zero-bias anomaly whose suppression with temperature and magnetic field only along the c-axis are completely consistent with the presence of HHZM. This feature is completely absent when tunneling purely into the c-axis, and its characteristics are also inconsistent with other origins of zero bias anomalies. Furthermore, additional measurements with soft-point contacts in bulk samples with various Fe interstitial contents demonstrate the intrinsic nature of the observed mode. Thus we provide evidence that FTS is indeed a higher order topological superconductor as well as a new method for probing 2D atomic crystals.

تحميل البحث