We present results of a Au-Ge alloy that is useful as a resistance-based thermometer from room temperature down to at least SI{0.2}{kelvin}. Over a wide range, the electrical resistivity of the alloy shows a logarithmic temperature dependence, which simultaneously retains the sensitivity required for practical thermometry while also maintaining a relatively modest and easily-measurable value of resistivity. We characterize the sensitivity of the alloy as a possible thermometer and show that it compares favorably to commercially-available temperature sensors. We experimentally identify that the characteristic logarithmic temperature dependence of the alloy stems from Kondo-like behavior induced by the specific heat treatment it undergoes.