In this paper, we consider an anticipative nonlinear filtering problem, in which the observation noise is correlated with the past of the signal. This new signal-observation model has its applications in both finance models with insider trading and in engineering. We derive a new equation for the filter in this context, analyzing both the nonlinear and the linear cases. We also handle the case of a finite filter with Volterra type observation. The performance of our algorithm is presented through numerical experiments.