Constraining the era of helium reionization using fast radio bursts


الملخص بالإنكليزية

The discovery of fast radio bursts (FRBs) about a decade ago opened up new possibilities for probing the ionization history of the Intergalactic Medium (IGM). In this paper we study the use of FRBs for tracing the epoch of HeII reionization, using simulations of their dispersion measures. We model dispersion measure contributions from the Milky Way, the IGM (homogeneous and inhomogeneous) and a possible host galaxy as a function of redshift and star formation rate. We estimate the number of FRBs required to distinguish between a model of the Universe in which helium reionization occurred at z = 3 from a model in which it occurred at z = 6 using a 2-sample Kolmogorov-Smirnoff test. We find that if the IGM is homogeneous >1100 FRBs are needed and that an inhomogeneous model in which traversal of the FRB pulse through galaxy halos increases the number of FRBs modestly, to >1600. We also find that to distinguish between a reionization that occurred at z = 3 or z = 3.5 requires ~5700 FRBs in the range 3 < z < 5.

تحميل البحث