Quantum spin-Hall effect on the Mobius graphene ribbon


الملخص بالإنكليزية

Topological phases of matter have revolutionized quantum engineering. Implementing a curved space Dirac equation solver based on the quantum Lattice Boltzmann method, we study the topological and geometrical transport properties of a Mobius graphene ribbon. In the absence of a magnetic field, we measure a quantum spin-Hall current on the graphene strip, originating from topology and curvature, whereas a quantum Hall current is not observed. In the torus geometry a Hall current is measured. Additionally, a specific illustration of the equivalence between the Berry and Ricci curvature is presented through a travelling wave-packet around the Mobius band.

تحميل البحث