Influence of Bonded Interactions on Structural Phases of Flexible Polymers


الملخص بالإنكليزية

We introduce a novel coarse-grained bead-spring model for flexible polymers to systematically examine the effects of an adjusted bonded potential on the formation and stability of structural macrostates in a thermal environment. The density of states obtained in advanced replica-exchange Monte Carlo simulations is analyzed by employing the recently developed generalized microcanonical inflection-point analysis method, which enables the identification of diverse structural phases and the construction of a suitably parameterized hyperphase diagram. It reveals that icosahedral phases dominate for polymers with asymmetric and narrow bond potentials, whereas polymers with symmetric and more elastic bonds tend to form amorphous structures with non-icosahedral cores. We also observe a hierarchy in the freezing transition behavior associated with the formation of the surface layer after nucleation.

تحميل البحث