The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is an unconventional superconducting state found under the influence of strong Zeeman field. This phase is identified by finite center-of-mass momenta in the Cooper pairs, causing the pairing amplitude to oscillate in real space. Repulsive correlations, on the other hand, smear out spatial inhomogeneities in d-wave superconductors. We investigate the FFLO state in a strongly correlated d-wave superconductor within a consolidated framework of Hartree-Fock-Bogoliubov theory and Gutzwiller approximation. We find that the profound effects of strong correlations lie in shifting the BCS-FFLO phase boundary towards a lower Zeeman field and thereby enlarging the window of the FFLO phase. In the FFLO state, our calculation features a sharp mid-gap peak in the density of states, indicating the formation of strongly localized Andreev bound states. We also find that the signatures of the FFLO phase survive even in the presence of an additional translational symmetry breaking competing order in the ground state. This is demonstrated by considering a broken symmetry ground state with a simultaneous presence of the d-wave superconducting order and a spin-density wave order, often found in unconventional superconductors.